想到2022中考数学真题试卷,大家也许都懂,有人问初三数学期末试卷及答案,下面和小编一起看看2022中考数学真题试卷,希望能够帮到您!
初三数学期中考试试卷
1.下列运算正确的是 ( ▲ )
A. B. C. D.
2.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是( ▲ )
A B C D
3. 如图,数轴上 两点分别对应实数 ,则下列结论正确的是 ( ▲ )
A. B.
C. D.
4.如图所示,正方形ABCD中,点E是CD边上一点,连结AE,交对角线BD于 F,连结
初三数学期末试卷及答案
数学期末考试的脚步声近了,初三的数学基础知识点你都学会了吗?以下是我为你整理的初三上册数学期末试卷,希望对大家有帮助!
初三上册数学期末试卷
一、精心选一选(本大题共8小题,每小题3分,共24分)
1.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后排序
正确的是( )
(A)A→B→C→D (B)D→B→C→A (C)C→D→A→B (D)A→C→B→D
2.已知直角三角形的两边长是方程x2-7 x+12=0的两根,则第三边长为( )
(A)7 (B)5 (C) (D)5或
3.已知3是关于x的方程 x2-2a+1=0的一个解,则2a的值是 ( )
(A)11 (B)12 (C)13 (D)14
4.下列命题中错误的( )
(A)一对邻角互补的四边形是平行四边形;
(B)一组对边平行,一组对角相等的四边形是平行四边形;
(C)等腰梯形的对角线相等;
(D)平行四边形的对角线互相平分.
5.如图,在直角坐标系中,直线y=6-x与函数y = (x0)的图象
相交于点A、B,设点A的坐标为(x1 ,y1),那么长为x1,宽为y1
的矩形的面 积和周长分别为( )
(A)4,12 (B)8,12 (C)4,6 ( D)8,6
6.如果点A(-1, )、B(1, )、C( , )是反比例函数 图象上的三个点,
则下列结论正确的是( )
(A) (B) (C) D)
7.在联欢晚会上 ,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳, 谁先抢到凳子谁获胜,为 使游戏公平,凳子最适当的位置在△ABC的( )
(A)三边中线的交点, (B)三条角平分线的交点 ,
(C)三边上高的交点, (D)三边中垂线的交点
8.边长为8cm的正方形纸片ABCD折叠 ,使点D落在BC边
中点E处,点A落在点F处,折痕为MN,则线段CN的
长是( ).
(A)2cm (B)3cm (C)4cm (D)5cm
二、认真填一填:(本大题共8小题,每小题3分,共24分.)
9.已知 是关于x的方程: 的一个解,则2a-1的值是 .
10.在一个有40万人口的县,随机调查了3000人,其中有2130人看中央电视台的焦点访谈节目,在该县随便问一个人,他看焦点访谈节目的概率大约是______________.
11.菱形有一个内角为600,较短的对角线长为6,则它的面积为 .
12.依次连接菱形各边中 点所得到的四边形是 .
13.如图,一几何体的三视图如右:
那么这个几何体是 .
14.用配方法将二次三项式 变形,
结果为 .
15.如图,若将四根木条钉成的矩形木框变为
平行四边形ABCD的形状,并使其面积为矩形
面积的一半,则这个平行四边形的一个最小内角
的值等于 .
16.如图,一个正方形摆放在桌面上,则正方形的边长为 .
三、细心做一做(17题每小题6分共12分18题8分)
17.(1)解方程 (2)解方程
18.(8分)如下图,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN .
(1) 试判断是路灯还是太阳光产生的影子,如果是路灯产生的影子确定路灯的位置(用点P表示).如果是太阳光请画出光线.
(2) 在图中画出表示大树高的线段.
(3) 若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树的部分.
四 解答题(19题7分、20题9分)
19.(7分)杨华与季红用5张规格相同的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:
当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;
当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).
问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?
20.(9分)如图,已知直线y = – x+4与反比例函数 的图象相交于点A(-2,a),并且与x轴相交于点B.
(1)求a的值.
(2)求反比例函数的表达式.
(3)求△AOB的面积.
五(21、22题各10分)
21.( 10分)将一块正方形铁皮的四个角剪去一个边长为4cm的小正方形,做成一个无盖的盒子.已知盒子的容积是400cm3,求原铁皮的边长.
22.(10分)已知:如图,在ΔABC中,AB=AC,AD⊥BC,垂足为点D,AN是ΔABC
外角∠CAM的平分线,CE⊥AN,垂足为点E.
(1)求证:四边形ADCE是矩形
(2)当 ΔABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.
六(23、24题各10分)
23.(10分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆 的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?
24.(10分)如图,在□ABCD中,∠ DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.
(1)求证:四边形AFCE是平行四边形;
(2)若去掉已知条件的“∠ DAB=60°”,上述的结论还成立吗? 若成立,请写出证明过程;若不成立,请说明理由.
七、(12分)
25.已知反比例函数 和一次函数y=2x-1,其中一次函数的图象经过
(a,b),(a+2,b+k)两点.
(1)求:反比例函数的解析式.
(2) 如图,已知点A在第一象限,且同时在上述两函数的图象上.求点A的坐标.
(3)利用(2)的结果,问在x轴上是否存在点P,使得?AOP为等腰三角形.
若存在,把符合条件的P点坐标直接写出来;若不存在,说明理由.
八、(14分)
26.如图,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.
(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积 ;
(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;
(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1:2的两部分?若存在,求此时BE的长;若不存在,请说明理由.
初三上册数学期末试卷答案
一.选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)
1.C 2.D 3.C 4.A 5.A 6.A 7.D 8.B
二.填空题(本大题共8个小题,每小题3分,满分24分)
9.13 10.0.71 11.18 12.矩形 13.空心圆柱 14. -100 15.30o
16.
三题
17.(1)
………………………………3分
…………………………………5分
……………………………………………6分
18.题略 (1)………3分 (2)………6分 (3)………8分(图作对即可)
四题
19.解:不公平,因为杨华胜的概率为 0.4季红胜的概率为0.6不公平. ………3分
应该为:当两张硬纸片上的图形可拼成电灯或小人时,杨华得3分; …5分
当两张硬纸片上的图形可拼成房子或小山时,季红得2分.……7分
20.(本小题9分)
解:(1) 将A(-2,a)代入y=-x+4中,得:a=-(-2)+4 所以 a =6 …………3分
(2)由(1)得:A(-2,6)www. Xkb1.coM
将A(-2,6)代入 中,得到 即k=-12
所以反比例函数的表达式为: ………6分
(3)如图:过A点作AD⊥x轴于D
因为 A(-2,6) 所以 AD=6
在直线y=-x+4中,令y=0,得x=4
所以 B(4,0) 即OB=4
所以△AOB的面积S= ×OB×AD= ×4×6=12………9分
五题(21、22题各10分)
21题(10分)
解:设原正方形的边长为xcm,则这个盒子的底面边长为x-8
由题意列出方程 4(x-8)2=400 ……………………………………………………5分
整理,得 x2 – 16x -36=0
解方程,得 x1 = 18, x2 = -2 ……………………………………………8分
因为正方形的边长不能为负数,所以x2 = -2舍去 ……………………………9分
因此,正方形的边长为18cm
答:原正方形的边长为18cm …………………………………………………10分
22.题(10分)
(1)证明:∵AB=AC, AD⊥BC
∴∠BAD=∠CAD,即∠CAD = ∠BAC
∵AN是ΔABC外角∠CAM的平分线
∴∠CAN= ∠CAM
∴∠CAD+∠CAN= ∠BAC+ ∠CAM=90°
∴∠DAN=9 0° ……………………………………………3分
又∵CE⊥AN ,AD⊥BC
∴ ∠AEC=90°,∠ADC=90°
∴四边形ADCE是矩形 …………………………5分
∵ΔABC为等腰直角三角形时,AD⊥BC
∴AD= BC=DC ……………………………………8分
∵四边形ADCE是矩形
∴四边形ADCE是一个正方形 ………………10分
六题(23、24题各10分)
23.解:设每盆花苗增加 株,则每盆花苗有 株,平均单株盈利为 元,由题意,
得 . ……………………………………………………5分
化简,整理,的 .
解这个方程,得 ………………………………………… ………9分
答:要使得每盆的盈利达到10元,每盆应该植入4株或5株.………………10分
24.解:(1)证明:∵四边形ABCD是平行四边形
∴DC∥AB,∠DCB=∠DAB=60°
∴∠ADE=∠CBF=60°
∵AE=AD,CF=CB
∴△AED,△CFB是正三角形,ED=BF ………………2分
在 ABCD中,AD=BC,DC∥=AB
∴ED+DC=BF+AB
即 EC=AF ………………3分
又∵DC∥AB
即EC∥AF
∴四边形AFCE是平行四边形 ………………4分
(2)上述结论还成立
证明:∵四边形ABCD是平行四边形
∴DC∥AB,∠DCB=∠DAB,AD=BC,DC∥=AB
∴∠ADE=∠CBF
∵AE=AD,CF=CB
∴∠AED=∠ADE,∠CFB=∠CBF
∴∠AED=∠CFB ………………6分
又∵AD=BC
∴△ADE≌△CBF ………………8分
∴ED=FB
∵DC=AB
∴ED+DC=FB+AB
即EC=FA ………………9分
∵DC∥AB
∴四边形AFCE是平行四边形 ………………10分
七题(12分)
25.题
解:(1)(a,b)(a+2, b+k)代入y=2x+1得:
b=2a-1
b+k=2(a+2)-1
解得 k=4 …………………………………………………………………4分
(2)当 =2x-1得
x 1= – 0 .5 x2=1
∵A点在第一象限
∴点A的坐标为(1,1) ………………………………………………………8分
(3)点p( 1,0)p(2,0)p( ,0) p(- ,0)……………………………12分
八题(14分)
26.解:(1)由已知条件得:
梯形周长为24,高4 ,面积为28.
BF=24÷2 –x=12–x ………………………………2分
过点F作FG⊥BC于G,过点A作AK⊥BC于K
则可得:FG= 12-x5 ×4 …………………………3分
∴S△BEF=12 BE?FG=-25 x2+245 x(7≤x≤10)…5分
(2)存在. ……………………… ……………………………6分
由(1)得:-25 x2+245 x=14 ……………………7分
得x1=7 x2=5(不合舍去)
∴存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7.……8分
(3)不存在 .………………………………………………………………………………9分
假设存在,显然是:S△BEF∶SAFECD=1∶2,(BE+BF)∶(AF+AD+DC)=1∶2……… ……11分
则有-25 x2 +165 x = 283
整理得:3×2-24x+70=0
△=576-8400
∴不存在这样的实数x. ………………………………………………………12分
即不存在线段EF将等腰梯形ABCD的周长和面积,同时分成1∶2的两部分. ……14分
初三英语期中考试试卷
三、阅读理解(共15小题;每小题2分,满分30分)
A
Letter A
Dear Roes,
I like your very much. I’m now writing to ask you about social 社交习惯). My friends want me to join them in their dinner party. I am very happy and have decided to go, but I’m a
九上期中考试数学试卷
第一学期九年级期中考试数学试题
一、选择题(每小题3分,共36分)
1.下列图形中,既是轴对称图形,又是中心对称图形的是()
A. , B. , C. , D.
2.下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边 形;③有一个角是直角的平行四边形是矩形;④两条对角线互相垂直且平分的四边形是菱形.其中错误命题的个数是
A.1 B.2 C.3 D.4
3.(2013?雅安)已知x1,x2是一元二次方程x2-2x=0的两根,则x1+x2的值是()
A.0, B.2, C.-2, D.4
4.(2013?益阳)抛物线y=2(x-3)2+1的顶点坐标是()
A.(3,1), B.(3,-1), C.(-3,1), D.(-3,-1)
5.为了改善居民住房条件,我市计划用未来两年的时间将城镇居民的住房面积由现在的人均约为l0m2提高到12.1m2,若每年的年增长率相同,则年增长率为
A.9% B.10% C.11% D.12%
6.正方形ABCD在坐标系中的位置如下图所示,将正方形ABCD绕D点顺时针旋转90°后,B点的坐标为
A.(一2,2) B.(4,1)C.(3,1) D.(4,0)
7.在同一直角坐标系中,函数 与 ( ≠0)的图像大致是
8.两圆的半径分别为R和r,圆心距为1,且R、r分别是方程 的两个根,则两圆的位置关系是
A.相交 B.外切 C.内切 D.外离
9.Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆OA,OB外切,那么图中两个扇形(阴影部分)的面积是
A. B. C. D.
10.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“l”,“2”,“3”,“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若两指针指向扇形的分界线,则都重转一次,在该游戏中乙获胜的概率是
A. B. C. D.
11.如下图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是
A.55° B.60°C.65° D.70°
12.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如下图所示,则下列结论正确的是
A.汽车在高速公路上的行驶速度为100km/h
B.乡村公路总长为90km
C.汽车在乡村公路上的行驶速度为60km/h
D.该记者在出发后4.5h到达采访地
二、填空题(每小题3分,共15分)
13.抛物线 与直线 只有一个交点,则实数 的值是_______
14.康康家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为JA0后,对后两位数字意见有分歧,最后决定由毫不知情的康康从如下图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在JA0之后,则选中的车牌号为JA058的概率是__________。
15.如下图为二次函数 的图象,在下列说法中:
① 0;②方程 的根是 =3;③ 0;④当 1时, 随 的增大而增大。
正确的说法有__________.(把正确的答案的序号都填在横线上)
16.如下图所示,平行四边形ABCD中,点E在边AD上,以BE为折痕,将 ABE向上翻折,点A正好落在CD上的F处,若△FDE的周长为8, FCB的周长为22, 则FC的长为__________________。
17.如下图,是由形状大小完全相同的梯形构成的,试观察图形并填表:
梯形个数 1 2 3 4…… 13.
周长3 +
4 +2
5 +3
……
三、解答题(第18-20题每题8分,第21题9分,第22题11分,第23题12分,第2题13分,共69分)
18.解方程:
(1)(2 +1)2=( -3)2(因式分解法)
(2)2 2—30= (配方法)
19.如下图,E、F分别是平行四边形ABCD对角线BD所在直线上两点,DE=BF.请你以F为一个端点,和图中已标有字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只需研究一组线段相等即可)
(1)连结_________;(2)猜想:______________;
(3)证明:(说明:写出证明过程中的重要依据)
20.已知:关于 的方程 2—2(m+1) + 2=0
(1)当 取何值时,方程有两个实数根?
(2)为 选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根。
21.如下图, ABC内接于⊙O,D为OC延长线上一点,∠ABC=∠DAC=30°
(1)判断直线AD与⊙O的位置关系,并说明理由;
(2)若OD⊥AB,BC=5,求AD的长。
22.已知:如下图,在平面直角坐标系 中,Rt OCD的一边OC在 轴上,∠=90°,点D在第一象限,OC=3,DC=4,反比例函数的图象经过OD的中点A。
(1)求该反比例函数的解析式。
(2)若该反比例函数的图象与Rt OCD的另一边DC交于点B,在 轴上求一点P,使PA+PB最小,求点P的坐标。
23.如下图,用长为39米的篱笆(虚线部分),一面靠墙围成矩形ABCD菜园(ABBC,且在边BC上开一个l米宽的门。
(1)要使围成的矩形ABCD菜园面积为128米2,那么矩形一边AB长应为多少米?
(2)可围成的矩形ABCD菜园的最大面积为多少平方米?此时矩形一边AB长为多少米?
24.如下图点A在 轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置。
(1)求点B的坐标;
(2)求经过A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由。
22012-2013学年度山东即墨第一学期九年级期中考试数学试题
数学试卷参考答案
一、选择题
1.C 2.B 3.B 4.B 5.B 6.D 7.D 8.C 9.A l0.C 11.C l2.C
二、填空题
13.士2 14. l5.①②④ l6.7 17.6 +4 ,( +2) 十
三、解答题
18.(1)
(2) 3 ,
19.(1)CF
(2)CF=AE
(3)证明:∵四边形ABCD是平行四边形
∴AD∥BC,AD=BC(平行四边形对边平行且相等)
∠ADB=∠CBD (两直线平行内错角相等)
∴∠ADE=∠CBF(等角的补角相等)
∵DE=BF
∴△ADE≌△CBF(SAS)
∴CF=AE(全等三角形的对应边相等)
20.(1)
(2)答案不唯一,只要正确即可。
21.解:(1)连接OA,
∵∠ABC=∠DAC=30°,
∵∠COA=2∠CBA,
∴∠DAO=90°.
∴AD与⊙O相切。
(2)连接OB,
∵OD⊥AB,OB=OA,
∴BC=AC=5
∵∠COA=60°
∴OA=5,∴AD=5
22.(1)反比例函数解析式为:
(2)点P坐标为(2.5,0)
23.(1)设矩形一边AB长为 .则BC的长为(39—2 +1)
根据题意,得 (39–2 +1)=128,即 2–20 +64=0,
解得 l=4, 2=16.
因为ABBC,所以AB=4 .
故要使围成的菜园面积为128米2,矩形一边AB应为4米。
(2)设菜园的面积为Sm2,
则S= (39–2 +1)= 一2 2+40 = 一2( 一10)2+200.
当 =10时,S取最大值,是200m2
故菜园的最大面积为200m2,此时AB为10m。
24.(1)点B的坐标为(一2,一2 )
(2)抛物线的解析式为
(3)抛物线的对称轴是直线x=2,设点P的坐标为(2, )
①当OP=OB=4时,OP2=16。 所以4+ =16.解得 士2
当P在(2,2 )时,B、O、P三点共线。
②当BP=BO=4时,BP2=16.所以42+( )2=16.解得 =
③当PB=PO时,BP2=PO2.所以42+( )2=22+ .解得
综合①、②、③,点P的坐标为(2, )。
2022中考数学真题试卷
2022年三明中考数学考试已经结束了,下面为您带来的是试卷点评,仅供参考。
三明中考数学试卷难度点评 2022年中考数学试卷顺应时代背景,以2011版《数学课程标准》为依据,合理选材,科学控制难度,既关注基础性,又关注综合性,体现选拔性。试卷首先体现价值引领,彰显立德树人的特点,突出考查关键能力。试题有机融合优秀传统文化,渗透美育和劳动教育,考查生活中的数学应用,知识和能力并重,渗透核心价值观,彰显立德树人。
其次,试卷也立足学科基础,注重学科素养。可以看出,试卷结构稳定,题型不变,聚焦基础知识、基本技能、通性通法的考查,基本得分题约占118分,中档题和稍难题还是聚焦二次函数、图形变换和圆,如10、16、23、24、25题
2022中考数学真题试卷的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于2022中考数学真题试卷的信息别忘了在本站进行查找喔。
本图文由作者自发贡献,该文观点仅代表作者观点。本站仅提供存储服务,不拥有所有权,不承担法律责任。如发现本站有涉嫌侵权/违规的内容,请联系删除。